Skip to content

Binary Tree

Table of Contents

94. Binary Tree Inorder Traversal

94. Binary Tree Inorder Traversal - Python Solution
from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def inorderTraversalRecursive(root: TreeNode) -> List[int]:
    res = []

    def dfs(node):
        if not node:
            return

        dfs(node.left)
        res.append(node.val)  # <--
        dfs(node.right)

    dfs(root)

    return res


# Iterative
def inorderTraversalIterative(root: Optional[TreeNode]) -> List[int]:
    if not root:
        return []

    stack = []
    res = []
    cur = root

    while cur or stack:
        if cur:
            stack.append(cur)
            cur = cur.left
        else:
            cur = stack.pop()
            res.append(cur.val)
            cur = cur.right

    return res


tree = build([0, 1, 2, 3, 4, 5, 6])
print(tree)
#     __0__
#    /     \
#   1       2
#  / \     / \
# 3   4   5   6
print(inorderTraversalRecursive(tree))  # [3, 1, 4, 0, 5, 2, 6]
print(inorderTraversalIterative(tree))  # [3, 1, 4, 0, 5, 2, 6]

104. Maximum Depth of Binary Tree

  • LeetCode | LeetCode CH (Easy)

  • Tags: tree, depth first search, breadth first search, binary tree

104. Maximum Depth of Binary Tree - Python Solution
from collections import deque
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def maxDepthRecursive(root: Optional[TreeNode]) -> int:
    if not root:
        return 0

    left = maxDepthRecursive(root.left)
    right = maxDepthRecursive(root.right)

    return 1 + max(left, right)


# DFS
def maxDepthDFS(root: Optional[TreeNode]) -> int:
    res = 0

    def dfs(node, cnt):
        if node is None:
            return
        cnt += 1
        nonlocal res
        res = max(res, cnt)

        dfs(node.left, cnt)
        dfs(node.right, cnt)

    dfs(root, 0)

    return res


# Iterative
def maxDepthIterative(root: Optional[TreeNode]) -> int:
    if not root:
        return 0

    q = deque([root])
    res = 0

    while q:
        res += 1
        n = len(q)

        for _ in range(n):
            node = q.popleft()
            if node.left:
                q.append(node.left)
            if node.right:
                q.append(node.right)

    return res


root = [1, 2, 2, 3, 4, None, None, None, None, 5]
root = build(root)
print(root)
#     ____1
#    /     \
#   2__     2
#  /   \
# 3     4
#      /
#     5
print(maxDepthRecursive(root))  # 4
print(maxDepthIterative(root))  # 4
print(maxDepthDFS(root))  # 4

226. Invert Binary Tree

  • LeetCode | LeetCode CH (Easy)

  • Tags: tree, depth first search, breadth first search, binary tree

226. Invert Binary Tree - Python Solution
from typing import Optional

from binarytree import build


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


# Recursive
def invertTreeRecursive(root: Optional[TreeNode]) -> Optional[TreeNode]:
    if not root:
        return root

    root.left, root.right = root.right, root.left

    invertTreeRecursive(root.left)
    invertTreeRecursive(root.right)

    return root


# Iterative
def invertTreeIterative(root: Optional[TreeNode]) -> Optional[TreeNode]:
    if not root:
        return root

    stack = [root]

    while stack:
        node = stack.pop()

        node.left, node.right = node.right, node.left
        if node.left:
            stack.append(node.left)
        if node.right:
            stack.append(node.right)

    return root


root = build([4, 2, 7, 1, 3, 6, 9])
print(root)
#     __4__
#    /     \
#   2       7
#  / \     / \
# 1   3   6   9
invertedRecursive = invertTreeRecursive(root)
print(invertedRecursive)
#     __4__
#    /     \
#   7       2
#  / \     / \
# 9   6   3   1
root = build([4, 2, 7, 1, 3, 6, 9])
invertedIterative = invertTreeIterative(root)
print(invertedIterative)
#     __4__
#    /     \
#   7       2
#  / \     / \
# 9   6   3   1

101. Symmetric Tree

  • LeetCode | LeetCode CH (Easy)

  • Tags: tree, depth first search, breadth first search, binary tree

101. Symmetric Tree - Python Solution
from collections import deque
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def isSymmetricRecursive(root: Optional[TreeNode]) -> bool:
    if not root:
        return True

    def check(left, right):
        if left is right:
            return True
        if not left or not right or left.val != right.val:
            return False
        outside = check(left.left, right.right)
        inside = check(left.right, right.left)
        return outside and inside

    return check(root.left, root.right)


# Iterative
def isSymmetricIterative(root: Optional[TreeNode]) -> bool:
    if not root:
        return True

    q = deque()
    q.append(root.left)
    q.append(root.right)

    while q:
        left = q.popleft()
        right = q.popleft()

        if not left and not right:
            continue

        if not left or not right or left.val != right.val:
            return False

        q.append(left.left)
        q.append(right.right)
        q.append(left.right)
        q.append(right.left)

    return True


root = [1, 2, 2, 3, 4, 4, 3]
root = build(root)
print(root)
#     __1__
#    /     \
#   2       2
#  / \     / \
# 3   4   4   3
print(isSymmetricRecursive(root))  # True
print(isSymmetricIterative(root))  # True

543. Diameter of Binary Tree

543. Diameter of Binary Tree - Python Solution
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Tree DFS
class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        self.diameter = 0

        def dfs(node):
            if not node:
                return 0
            left = dfs(node.left)
            right = dfs(node.right)

            self.diameter = max(self.diameter, left + right)

            return 1 + max(left, right)

        dfs(root)

        return self.diameter


root = build([1, 2, 3, 4, 5])
print(root)
#     __1
#    /   \
#   2     3
#  / \
# 4   5
obj = Solution()
print(obj.diameterOfBinaryTree(root))  # 3
543. Diameter of Binary Tree - C++ Solution
#include <algorithm>
#include <iostream>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

int diameterOfBinaryTree(TreeNode* root) {
    int diameter = 0;

    auto dfs = [&](auto&& self, TreeNode* node) -> int {
        if (!node) return 0;
        int left = self(self, node->left);
        int right = self(self, node->right);

        diameter = max(diameter, left + right);

        return 1 + max(left, right);
    };

    dfs(dfs, root);
    return diameter;
}

int main() {
    // [1, 2, 3, 4, 5]
    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);
    cout << diameterOfBinaryTree(root) << endl;  // 3

    return 0;
}

102. Binary Tree Level Order Traversal

102. Binary Tree Level Order Traversal - Python Solution
from collections import deque
from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


def levelOrder(root: Optional[TreeNode]) -> List[List[int]]:
    if not root:
        return []

    q = deque([root])
    res = []

    while q:
        level = []
        size = len(q)

        for _ in range(size):
            cur = q.popleft()
            level.append(cur.val)

            if cur.left:
                q.append(cur.left)
            if cur.right:
                q.append(cur.right)

        res.append(level)

    return res


tree = build([3, 9, 20, None, None, 15, 7])
print(tree)
#   3___
#  /    \
# 9     _20
#      /   \
#     15    7
print(levelOrder(tree))  # [[3], [9, 20], [15, 7]]

108. Convert Sorted Array to Binary Search Tree

  • LeetCode | LeetCode CH (Easy)

  • Tags: array, divide and conquer, tree, binary search tree, binary tree

108. Convert Sorted Array to Binary Search Tree - Python Solution
from typing import List, Optional


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def sortedArrayToBST(nums: List[int]) -> Optional[TreeNode]:
    if len(nums) == 0:
        return None

    mid = len(nums) // 2
    root = TreeNode(nums[mid])

    root.left = sortedArrayToBST(nums[:mid])
    root.right = sortedArrayToBST(nums[mid + 1 :])

    return root


nums = [-10, -3, 0, 5, 9]
root = sortedArrayToBST(nums)
#      0
#     / \
#   -3   9
#   /   /
# -10  5
108. Convert Sorted Array to Binary Search Tree - C++ Solution
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if (nums.size() == 0) return nullptr;

        int mid = nums.size() / 2;
        TreeNode* root = new TreeNode(nums[mid]);

        vector<int> left(nums.begin(), nums.begin() + mid);
        vector<int> right(nums.begin() + mid + 1, nums.end());

        root->left = sortedArrayToBST(left);
        root->right = sortedArrayToBST(right);

        return root;
    }
};

int main() { return 0; }

98. Validate Binary Search Tree

  • LeetCode | LeetCode CH (Medium)

  • Tags: tree, depth first search, binary search tree, binary tree

98. Validate Binary Search Tree - Python Solution
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


def isValidBST(root: Optional[TreeNode]) -> bool:
    inorder = []  # inorder traversal of BST

    def dfs(node):
        if not node:
            return None
        dfs(node.left)
        inorder.append(node.val)
        dfs(node.right)

    dfs(root)

    for i in range(1, len(inorder)):
        if inorder[i] <= inorder[i - 1]:
            return False

    return True


root = [5, 1, 4, None, None, 3, 6]
root = build(root)
print(root)
#   5__
#  /   \
# 1     4
#      / \
#     3   6
print(isValidBST(root))  # False
# [1, 5, 3, 4, 6]
98. Validate Binary Search Tree - C++ Solution
#include <cassert>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right)
        : val(x), left(left), right(right) {}
};

class Solution {
   private:
    vector<int> inorder;
    bool check(vector<int> inorder) {
        int n = inorder.size();
        if (n <= 1) return true;
        for (int i = 1; i < n; i++) {
            if (inorder[i] <= inorder[i - 1]) return false;
        }
        return true;
    }

   public:
    bool isValidBST(TreeNode *root) {
        auto dfs = [&](auto &&self, TreeNode *node) -> void {
            if (!node) return;

            self(self, node->left);
            inorder.push_back(node->val);
            self(self, node->right);
        };

        dfs(dfs, root);

        return check(inorder);
    }
};

int main() {
    Solution s;
    TreeNode *root = new TreeNode(2);
    root->left = new TreeNode(1);
    root->right = new TreeNode(3);
    assert(s.isValidBST(root) == true);

    root = new TreeNode(5);
    root->left = new TreeNode(1);
    root->right = new TreeNode(4);
    root->right->left = new TreeNode(3);
    root->right->right = new TreeNode(6);
    assert(s.isValidBST(root) == false);

    root = new TreeNode(5);
    root->left = new TreeNode(4);
    root->right = new TreeNode(6);
    root->right->left = new TreeNode(3);
    root->right->right = new TreeNode(7);
    assert(s.isValidBST(root) == false);

    return 0;
}

230. Kth Smallest Element in a BST

  • LeetCode | LeetCode CH (Medium)

  • Tags: tree, depth first search, binary search tree, binary tree

230. Kth Smallest Element in a BST - Python Solution
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def kthSmallestRecursive(root: Optional[TreeNode], k: int) -> int:
    inorder = []

    def dfs(node):
        if not node:
            return None
        dfs(node.left)
        inorder.append(node.val)
        dfs(node.right)

    dfs(root)
    return inorder[k - 1]


# Iteratve
def kthSmallestIteratve(root: Optional[TreeNode], k: int) -> int:
    stack = []
    while True:
        while root:
            stack.append(root)
            root = root.left
        root = stack.pop()
        k -= 1
        if not k:
            return root.val
        root = root.right


root = build([3, 1, 4, None, 2])
k = 1
print(root)
#   __3
#  /   \
# 1     4
#  \
#   2
print(kthSmallestRecursive(root, k))  # 1
print(kthSmallestIteratve(root, k))  # 1

199. Binary Tree Right Side View

  • LeetCode | LeetCode CH (Medium)

  • Tags: tree, depth first search, breadth first search, binary tree

        ____1       <---
       /     \
      2__     2     <--- Look at the rightmost node at each level
     /   \     \
    3     4     3   <---
         /
        5           <---
    

199. Binary Tree Right Side View - Python Solution
from collections import deque
from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


# Binary Tree
def rightSideView(root: Optional[TreeNode]) -> List[int]:
    if not root:
        return []

    q = deque([root])
    res = []

    while q:
        n = len(q)
        for i in range(n):
            node = q.popleft()
            if i == n - 1:
                res.append(node.val)
            if node.left:
                q.append(node.left)
            if node.right:
                q.append(node.right)

    return res


root = [1, 2, 2, 3, 4, None, 3, None, None, 5]
root = build(root)
print(root)
#     ____1
#    /     \
#   2__     2
#  /   \     \
# 3     4     3
#      /
#     5
print(rightSideView(root))  # [1, 2, 3, 5]

114. Flatten Binary Tree to Linked List

  • LeetCode | LeetCode CH (Medium)

  • Tags: linked list, stack, tree, depth first search, binary tree

114. Flatten Binary Tree to Linked List - C++ Solution
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
    TreeNode* head;

   public:
    void flatten(TreeNode* root) {
        if (!root) return;

        flatten(root->right);
        flatten(root->left);
        root->left = nullptr;
        root->right = head;
        head = root;
    }
};

105. Construct Binary Tree from Preorder and Inorder Traversal

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, hash table, divide and conquer, tree, binary tree

105. Construct Binary Tree from Preorder and Inorder Traversal - Python Solution
from typing import List, Optional

from helper import TreeNode


def buildTree(preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
    """
    preorder  root left right  1  2  3
    inorder   left root right  4  5  6
    """
    if len(preorder) == 0:
        return None

    root_val = preorder[0]  # 1
    root = TreeNode(root_val)

    separator_idx = inorder.index(root_val)  # 5

    left_inorder = inorder[:separator_idx]  # 4
    right_inorder = inorder[separator_idx + 1 :]  # 6

    left_preorder = preorder[1 : 1 + len(left_inorder)]  # 2
    right_preorder = preorder[1 + len(left_inorder) :]  # 3

    root.left = buildTree(left_preorder, left_inorder)
    root.right = buildTree(right_preorder, right_inorder)

    return root


preorder = [3, 9, 20, 15, 7]
inorder = [9, 3, 15, 20, 7]
root = buildTree(preorder, inorder)
print(root)
#     3
#    / \
#   9  20
#     /  \
#    15   7
105. Construct Binary Tree from Preorder and Inorder Traversal - C++ Solution
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    vector<int> preorder;
    unordered_map<int, int> inorderMap;

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        this->preorder = preorder;
        for (size_t i = 0; i < inorder.size(); i++) {
            inorderMap[inorder[i]] = i;
        }
        return buildSubtree(0, 0, inorder.size() - 1);
    }

   private:
    TreeNode* buildSubtree(int rootIndex, int left, int right) {
        if (left > right) return nullptr;

        TreeNode* root = new TreeNode(preorder[rootIndex]);
        int inorderIndex = inorderMap[preorder[rootIndex]];

        root->left = buildSubtree(rootIndex + 1, left, inorderIndex - 1);
        root->right = buildSubtree(rootIndex + (inorderIndex - left + 1),
                                   inorderIndex + 1, right);

        return root;
    }
};

int main() {
    vector<int> preorder = {3, 9, 20, 15, 7};
    vector<int> inorder = {9, 3, 15, 20, 7};
    Solution solution;
    TreeNode* root = solution.buildTree(preorder, inorder);
    cout << root->val << endl;                // 3
    cout << root->left->val << endl;          // 9
    cout << root->right->val << endl;         // 20
    cout << root->right->left->val << endl;   // 15
    cout << root->right->right->val << endl;  // 7
    return 0;
}

437. Path Sum III

437. Path Sum III - C++ Solution
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    int pathSum(TreeNode *root, int targetSum) {
        int res = 0;
        unordered_map<long long, int> cnt{{0, 1}};

        auto dfs = [&](auto &&self, TreeNode *node, long long cur) {
            if (!node) return;
            cur += node->val;

            if (cnt.find(cur - targetSum) != cnt.end())
                res += cnt[cur - targetSum];

            cnt[cur]++;
            self(self, node->left, cur);
            self(self, node->right, cur);
            cnt[cur]--;
        };

        dfs(dfs, root, 0);
        return res;
    }
};

int main() {
    Solution s;
    {
        TreeNode *root = new TreeNode(10);
        root->left = new TreeNode(5);
        root->right = new TreeNode(-3);
        root->left->left = new TreeNode(3);
        root->left->right = new TreeNode(2);
        root->right->right = new TreeNode(11);
        root->left->left->left = new TreeNode(3);
        root->left->left->right = new TreeNode(-2);
        root->left->right->right = new TreeNode(1);
        cout << s.pathSum(root, 8) << endl;  // 3
    }
    {
        TreeNode *root = new TreeNode(5);
        root->left = new TreeNode(4);
        root->right = new TreeNode(8);
        root->left->left = new TreeNode(11);
        root->right->left = new TreeNode(13);
        root->right->right = new TreeNode(4);
        root->left->left->left = new TreeNode(7);
        root->left->left->right = new TreeNode(2);
        root->right->right->left = new TreeNode(5);
        root->right->right->right = new TreeNode(1);
        cout << s.pathSum(root, 22) << endl;  // 3
    }
    return 0;
}

236. Lowest Common Ancestor of a Binary Tree

236. Lowest Common Ancestor of a Binary Tree - Python Solution
from typing import List, Optional

from binarytree import build


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def lowestCommonAncestor(
    root: "TreeNode", p: "TreeNode", q: "TreeNode"
) -> "TreeNode":
    if not root or q == root or p == root:
        return root

    left = lowestCommonAncestor(root.left, p, q)
    right = lowestCommonAncestor(root.right, p, q)

    if left and right:
        return root

    return left or right


root = build([3, 5, 1, 6, 2, 0, 8, None, None, 7, 4])
print(root)
#     ______3__
#    /         \
#   5__         1
#  /   \       / \
# 6     2     0   8
#      / \
#     7   4
p = root.left  # 5
q = root.right  # 1
print(lowestCommonAncestor(root, p, q))  # 3
#     ______3__
#    /         \
#   5__         1
#  /   \       / \
# 6     2     0   8
#      / \
#     7   4
r = root.left.right.right  # 4
print(lowestCommonAncestor(root, p, r))  # 5
#   5__
#  /   \
# 6     2
#      / \
#     7   4
236. Lowest Common Ancestor of a Binary Tree - C++ Solution
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr || root == p || root == q) {
            return root;
        }

        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);

        if (left && right) {
            return root;
        }

        return left ? left : right;
    }
};

int main() { return 0; }

124. Binary Tree Maximum Path Sum

  • LeetCode | LeetCode CH (Hard)

  • Tags: dynamic programming, tree, depth first search, binary tree

124. Binary Tree Maximum Path Sum - Python Solution
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


def maxPathSum(root: Optional[TreeNode]) -> int:
    res = float("-inf")

    def dfs(node):
        if not node:
            return 0

        leftMax = max(dfs(node.left), 0)
        rightMax = max(dfs(node.right), 0)

        cur = node.val + leftMax + rightMax
        nonlocal res
        res = max(res, cur)

        return node.val + max(leftMax, rightMax)

    dfs(root)

    return res


root = build([-10, 9, 20, None, None, 15, 7])
print(root)
#   -10___
#  /      \
# 9       _20
#        /   \
#       15    7
print(maxPathSum(root))  # 42

Comments