Skip to content

Bit Manipulation

Table of Contents

136. Single Number

136. Single Number - Python Solution
from functools import reduce
from operator import xor
from typing import List


# XOR
def singleNumber(nums: List[int]) -> int:
    res = 0
    for num in nums:
        res ^= num
    return res


# XOR
def singleNumberXOR(nums: List[int]) -> int:
    return reduce(xor, nums)


# XOR
def singleNumberXORLambda(nums: List[int]) -> int:
    return reduce(lambda x, y: x ^ y, nums)


nums = [4, 1, 2, 1, 2]
print(singleNumber(nums))  # 4
print(singleNumberXOR(nums))  # 4
print(singleNumberXORLambda(nums))  # 4

191. Number of 1 Bits

191. Number of 1 Bits - Python Solution
# Bit Manipulation
def hammingWeight1(n: int) -> int:
    res = 0

    while n != 0:
        n = n & (n - 1)  # Unset the rightmost 1-bit
        res += 1

    return res


def hammingWeight2(n: int) -> int:
    return bin(n).count("1")


def hammingWeight3(n: int) -> int:
    def decimalToBinary(n: int) -> str:
        if n == 0:
            return "0"

        binary = ""
        while n > 0:
            binary = str(n % 2) + binary
            n //= 2

        return binary

    binary = decimalToBinary(n)

    return binary.count("1")


n = 11
print(hammingWeight1(n))  # 3
print(hammingWeight2(n))  # 3

n = 47
print(bin(n))

338. Counting Bits

338. Counting Bits - Python Solution
from typing import List


# Bit Manipulation
def countBits(n: int) -> List[int]:
    bits = [0 for _ in range(n + 1)]

    for i in range(1, n + 1):
        bits[i] = bits[i >> 1] + (i & 1)

    return bits


n = 5
print(countBits(n))  # [0, 1, 1, 2, 1, 2]

190. Reverse Bits

190. Reverse Bits - Python Solution
# Bit Manipulation
def reverseBits(n: int) -> int:
    res = 0

    for i in range(32):
        res = (res << 1) | (n & 1)
        n >>= 1

    return res


n = 0b00000010100101000001111010011100
print(reverseBits(n))  # 964176192

268. Missing Number

  • LeetCode | LeetCode CH (Easy)

  • Tags: array, hash table, math, binary search, bit manipulation, sorting

268. Missing Number - Python Solution
from typing import List


# Math
def missingNumberMath(nums: List[int]) -> int:
    n = len(nums)
    return (n * (n + 1)) // 2 - sum(nums)


# Bit Manipulation (XOR)
def missingNumberXOR(nums: List[int]) -> int:
    n = len(nums)

    for i, num in enumerate(nums):
        n ^= i ^ num

    return n


nums = [3, 0, 1]
print(missingNumberMath(nums))  # 2
print(missingNumberXOR(nums))  # 2

371. Sum of Two Integers

371. Sum of Two Integers - Python Solution
# Bit Manipulation
def getSum(a: int, b: int) -> int:
    MASK = 0xFFFFFFFF
    MAX_INT = 0x7FFFFFFF

    while b != 0:
        temp = (a ^ b) & MASK
        b = ((a & b) << 1) & MASK
        a = temp

    return a if a <= MAX_INT else ~(a ^ MASK)


print(getSum(1, 2))  # 3

7. Reverse Integer

7. Reverse Integer - Python Solution
# Math
def reverse(x: int) -> int:
    INT_MAX = 2**31 - 1

    sign = -1 if x < 0 else 1
    x = abs(x)
    res = 0

    while x != 0:
        x, pop = divmod(x, 10)

        if res > (INT_MAX - pop) // 10:
            return 0

        res = res * 10 + pop

    return res * sign


print(reverse(123))  # 321
print(reverse(-123))  # -321

Comments