Heap Two Heaps¶
Table of Contents¶
- 295. Find Median from Data Stream (Hard)
- 480. Sliding Window Median (Hard)
- 502. IPO (Hard)
295. Find Median from Data Stream¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: two pointers, design, sorting, heap priority queue, data stream
295. Find Median from Data Stream - Python Solution
from heapq import heappop, heappush
# Dual Heaps
class MedianFinder:
def __init__(self):
self.minHeap = []
self.maxHeap = []
self.min_size = 0
self.max_size = 0
def addNum(self, num: int) -> None:
heappush(self.maxHeap, -num)
heappush(self.minHeap, -heappop(self.maxHeap))
self.min_size += 1
if self.min_size > self.max_size:
heappush(self.maxHeap, -heappop(self.minHeap))
self.min_size -= 1
self.max_size += 1
def findMedian(self) -> float:
if self.min_size == self.max_size:
return (-self.maxHeap[0] + self.minHeap[0]) / 2.0
return -self.maxHeap[0]
obj = MedianFinder()
obj.addNum(1)
obj.addNum(2)
assert obj.findMedian() == 1.5
obj.addNum(3)
assert obj.findMedian() == 2
obj.addNum(4)
assert obj.findMedian() == 2.5
obj.addNum(5)
assert obj.findMedian() == 3
print("All Passed.")
295. Find Median from Data Stream - C++ Solution
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
class MedianFinder {
private:
priority_queue<int> maxHeap;
priority_queue<int, vector<int>, greater<int>> minHeap;
int max_size = 0;
int min_size = 0;
public:
MedianFinder() {}
void addNum(int num) {
if (min_size == max_size) {
minHeap.push(num);
maxHeap.push(minHeap.top());
minHeap.pop();
max_size++;
} else {
maxHeap.push(num);
minHeap.push(maxHeap.top());
maxHeap.pop();
min_size++;
}
}
double findMedian() {
if (min_size == max_size) {
return (maxHeap.top() + minHeap.top()) / 2.0;
} else {
return (double)maxHeap.top();
}
}
};
int main() {
MedianFinder* obj = new MedianFinder();
obj->addNum(1);
obj->addNum(2);
cout << obj->findMedian() << endl; // 1.5
obj->addNum(3);
cout << obj->findMedian() << endl; // 2
return 0;
}
480. Sliding Window Median¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, hash table, sliding window, heap priority queue
480. Sliding Window Median - Python Solution
import heapq
from typing import List
from sortedcontainers import SortedList
# Heap - Two Heaps
def medianSlidingWindow1(nums: List[int], k: int) -> List[float]:
min_heap, max_heap = [], []
for i in range(k):
heapq.heappush(min_heap, (nums[i], i))
for i in range(k // 2):
n, idx = heapq.heappop(min_heap)
heapq.heappush(max_heap, (-n, idx))
res = [
(
(min_heap[0][0] - max_heap[0][0]) / 2
if k % 2 == 0
else min_heap[0][0] * 1.0
)
]
for i in range(k, len(nums)):
if nums[i] < min_heap[0][0]:
heapq.heappush(max_heap, (-nums[i], i))
if nums[i - k] >= min_heap[0][0]:
n, idx = heapq.heappop(max_heap)
heapq.heappush(min_heap, (-n, idx))
else:
heapq.heappush(min_heap, (nums[i], i))
if nums[i - k] <= min_heap[0][0]:
n, idx = heapq.heappop(min_heap)
heapq.heappush(max_heap, (-n, idx))
while min_heap and min_heap[0][1] <= i - k:
heapq.heappop(min_heap)
while max_heap and max_heap[0][1] <= i - k:
heapq.heappop(max_heap)
res.append(
(min_heap[0][0] - max_heap[0][0]) / 2
if k % 2 == 0
else min_heap[0][0] * 1.0
)
return res
# Sorted List
def medianSlidingWindow2(nums: List[int], k: int) -> List[float]:
window = SortedList()
res = []
for i in range(len(nums)):
window.add(nums[i])
if len(window) == k:
if k % 2 == 1:
res.append(window[k // 2])
else:
res.append((window[k // 2 - 1] + window[k // 2]) / 2.0)
window.remove(nums[i - k + 1])
return res
nums = [1, 2, 3, 4, 2, 3, 1, 4, 2]
k = 3
print(medianSlidingWindow1(nums, k))
print(medianSlidingWindow2(nums, k))
502. IPO¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, greedy, sorting, heap priority queue
502. IPO - Python Solution
import heapq
from typing import List
# Heap - Two Heaps
def findMaximizedCapital(
k: int, w: int, profits: List[int], capital: List[int]
) -> int:
if not profits or not capital:
return w
minHeap = []
maxHeap = []
for i in range(len(profits)):
heapq.heappush(minHeap, (capital[i], profits[i]))
for _ in range(k):
while minHeap and minHeap[0][0] <= w:
capital, profit = heapq.heappop(minHeap)
heapq.heappush(maxHeap, -profit)
if not maxHeap:
break
w += -heapq.heappop(maxHeap)
return w
k = 2
w = 0
profits = [1, 2, 3]
capital = [0, 1, 1]
print(findMaximizedCapital(k, w, profits, capital)) # 4