Skip to content

DP Basic

Table of Contents

509. Fibonacci Number

  • LeetCode | LeetCode CH (Easy)

  • Tags: math, dynamic programming, recursion, memoization

  • Return the n-th Fibonacci number.
  • dp[n] stores the n-th Fibonacci number.
  • Formula: dp[n] = dp[n - 1] + dp[n - 2].
  • Initialize dp[0] = 0 and dp[1] = 1.
n dp[n-2] dp[n-1] dp[n]
0 - - 0
1 - 0 1
2 0 1 1
3 1 1 2
4 1 2 3
5 2 3 5
6 3 5 8
7 5 8 13
8 8 13 21
9 13 21 34
10 21 34 55
509. Fibonacci Number - Python Solution
from functools import cache


# DP
def fibDP(n: int) -> int:
    if n <= 1:
        return n

    dp = [i for i in range(n + 1)]

    for i in range(2, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]

    return dp[n]


# DP (Optimized)
def fibDPOptimized(n: int) -> int:
    if n <= 1:
        return n

    n1, n2 = 0, 1
    for _ in range(2, n + 1):
        n1, n2 = n2, n1 + n2

    return n2


# Recursive
@cache
def fibRecursive(n: int) -> int:
    if n <= 1:
        return n

    return fibRecursive(n - 1) + fibRecursive(n - 2)


n = 10
print(fibDP(n))  # 55
print(fibDPOptimized(n))  # 55
print(fibRecursive(n))  # 55

70. Climbing Stairs

  • LeetCode | LeetCode CH (Easy)

  • Tags: math, dynamic programming, memoization

  • Return the number of distinct ways to reach the top of the stairs.
  • dp[n] stores the number of distinct ways to reach the n-th stair.
  • Formula: dp[n] = dp[n - 1] + dp[n - 2].
  • Initialize dp[0] = 0, dp[1] = 1, and dp[2] = 2.
n dp[n-2] dp[n-1] dp[n]
0 - - 0
1 - - 1
2 - 1 2
3 1 2 3
4 2 3 5
5 3 5 8
6 5 8 13
7 8 13 21
8 13 21 34
9 21 34 55
10 34 55 89
70. Climbing Stairs - Python Solution
from functools import cache


# DP
def climbStairsDP(n: int) -> int:
    if n <= 2:
        return n

    dp = [i for i in range(n + 1)]

    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]

    return dp[n]


# DP (Optimized)
def climbStairsDPOptimized(n: int) -> int:
    if n <= 2:
        return n

    first, second = 1, 2

    for _ in range(3, n + 1):
        first, second = second, first + second

    return second


# Recursion
def climbStairsRecursion(n: int) -> int:
    @cache
    def dfs(i: int) -> int:
        if i <= 1:
            return 1
        return dfs(i - 1) + dfs(i - 2)

    return dfs(n)


print(climbStairsDP(10))  # 89
print(climbStairsDPOptimized(10))  # 89
print(climbStairsRecursion(10))  # 89
70. Climbing Stairs - C++ Solution
#include <iostream>
using namespace std;

int climbStairs(int n) {
    if (n <= 2) return n;
    int f1 = 1, f2 = 2;
    int res;

    int i = 3;
    while (i <= n) {
        res = f1 + f2;
        f1 = f2;
        f2 = res;
        ++i;
    }
    return res;
}

int main() {
    cout << climbStairs(2) << endl;  // 2
    cout << climbStairs(3) << endl;  // 3
    cout << climbStairs(6) << endl;  // 13
    return 0;
}

746. Min Cost Climbing Stairs

  • LeetCode | LeetCode CH (Easy)

  • Tags: array, dynamic programming

  • Return the minimum cost to reach the top of the stairs.

  • dp[n] stores the minimum cost to reach the n-th stair.

  • Formula: dp[n] = cost[n] + min(dp[n - 1], dp[n - 2]).
  • Initialize dp[0] = cost[0] and dp[1] = cost[1].
  • Return min(dp[-1], dp[-2]).

  • Example: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]

n cost[n] dp[n-2] dp[n-1] dp[n]
0 1 - - 1
1 100 - 1 100
2 1 1 100 2
3 1 100 2 3
4 1 2 3 3
5 100 3 3 103
6 1 3 103 4
7 1 103 4 5
8 100 4 5 104
9 1 5 104 6
746. Min Cost Climbing Stairs - Python Solution
from typing import List


def minCostClimbingStairs(cost: List[int]) -> int:
    dp = [0 for _ in range(len(cost))]

    dp[0], dp[1] = cost[0], cost[1]

    for i in range(2, len(cost)):
        dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
    print(dp)
    return min(dp[-1], dp[-2])


cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
print(minCostClimbingStairs(cost))  # 6

198. House Robber

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, dynamic programming

  • Return the maximum amount of money that can be robbed from the houses. No two adjacent houses can be robbed.

  • dp[n] stores the maximum amount of money that can be robbed from the first n houses.

  • Formula: dp[n] = max(dp[n - 1], dp[n - 2] + nums[n]).
    • Skip: dp[n] → dp[n - 1]
    • Rob: dp[n] → dp[n - 2] + nums[n]
  • Initialize dp[0] = nums[0] and dp[1] = max(nums[0], nums[1]).
  • Return dp[-1].
  • Example: nums = [2, 7, 9, 3, 1]
n nums[n] dp[n-2] dp[n-1] dp[n-2] + nums[n] dp[n]
0 2 - 2 - 2
1 7 - 7 - 7
2 9 2 7 11 11
3 3 7 11 10 11
4 1 11 11 12 12
198. House Robber - Python Solution
from typing import List


# DP (House Robber)
def rob1(nums: List[int]) -> int:
    if len(nums) < 3:
        return max(nums)

    dp = [0 for _ in range(len(nums))]
    dp[0], dp[1] = nums[0], max(nums[0], nums[1])

    for i in range(2, len(nums)):
        dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])

    return dp[-1]


# DP (House Robber) Optimized
def rob2(nums: List[int]) -> int:
    f0, f1 = 0, 0

    for num in nums:
        f0, f1 = f1, max(f1, f0 + num)

    return f1


nums = [2, 7, 9, 3, 1]
print(rob1(nums))  # 12
print(rob2(nums))  # 12
198. House Robber - C++ Solution
#include <iostream>
#include <vector>
using namespace std;

int rob(vector<int> &nums) {
    int prev = 0, cur = 0, temp = 0;

    for (int num : nums) {
        temp = cur;
        cur = max(cur, prev + num);
        prev = temp;
    }
    return cur;
}

int main() {
    vector<int> nums = {2, 7, 9, 3, 1};
    cout << rob(nums) << endl;  // 12
    return 0;
}

213. House Robber II

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, dynamic programming

  • Return the maximum amount of money that can be robbed from the houses arranged in a circle.
  • Circular → Linear: nums[0] and nums[-1] cannot be robbed together.
  • Rob from 0 to n - 2
n nums[n] dp[n-2] dp[n-1] dp[n-2] + nums[n] dp[n]
0 2 - 2 - 2
1 7 - 7 - 7
2 9 2 7 11 11
3 3 7 11 10 11
  • Rob from 1 to n - 1
n nums[n] dp[n-2] dp[n-1] dp[n-2] + nums[n] dp[n]
1 7 - - - 7
2 9 - 7 - 9
3 3 7 9 10 10
4 1 9 10 10 10
213. House Robber II - Python Solution
from typing import List


# DP
def rob(nums: List[int]) -> int:
    if len(nums) <= 3:
        return max(nums)

    def robLinear(nums: List[int]) -> int:
        dp = [0 for _ in range(len(nums))]
        dp[0], dp[1] = nums[0], max(nums[0], nums[1])

        for i in range(2, len(nums)):
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])

        return dp[-1]

    # circle -> linear
    a = robLinear(nums[1:])  # 2nd house to the last house
    b = robLinear(nums[:-1])  # 1st house to the 2nd last house

    return max(a, b)


nums = [2, 7, 9, 3, 1]
print(rob(nums))  # 11
213. House Robber II - C++ Solution
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

// DP
int robDP(vector<int>& nums) {
    int n = nums.size();
    if (n <= 3) return *max_element(nums.begin(), nums.end());

    vector<int> dp1(n, 0), dp2(n, 0);

    dp1[0] = nums[0];
    dp2[1] = max(nums[0], nums[1]);
    for (int i = 2; i < n - 1; i++) {
        dp1[i] = max(dp1[i - 1], dp1[i - 2] + nums[i]);
    }

    dp2[1] = nums[1];
    dp2[2] = max(nums[1], nums[2]);
    for (int i = 3; i < n; i++) {
        dp1[i] = max(dp1[i - 1], dp1[i - 2] + nums[i]);
    }

    return max(dp1[n - 2], dp2[n - 1]);
}

// DP (Space Optimized)
int robDPOptimized(vector<int>& nums) {
    int n = nums.size();
    if (n <= 3) return *max_element(nums.begin(), nums.end());

    int f1 = nums[0];
    int f2 = max(nums[0], nums[1]);
    int res1;
    for (int i = 2; i < n - 1; i++) {
        res1 = max(f2, f1 + nums[i]);
        f1 = f2;
        f2 = res1;
    }

    f1 = nums[1];
    f2 = max(nums[1], nums[2]);
    int res2;
    for (int i = 3; i < n; i++) {
        res2 = max(f2, f1 + nums[i]);
        f1 = f2;
        f2 = res2;
    }

    return max(res1, res2);
}

int main() {
    vector<int> nums = {2, 3, 2};
    cout << robDP(nums) << endl;           // 3
    cout << robDPOptimized(nums) << endl;  // 3

    nums = {1, 2, 3, 1};
    cout << robDP(nums) << endl;           // 4
    cout << robDPOptimized(nums) << endl;  // 4

    return 0;
}

376. Wiggle Subsequence

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, dynamic programming, greedy

  • Return the length of the longest wiggle subsequence.
  • up[n] stores the length of the longest wiggle subsequence ending at n with a rising wiggle.
  • down[n] stores the length of the longest wiggle subsequence ending at n with a falling wiggle.
  • Initialize up[0] = 1 and down[0] = 1.
  • Example: nums = [1, 7, 4, 9, 2, 5]
nums[n] nums[n-1] up[n-1] down[n-1] up[n] down[n]
1 - - - 1 1
7 1 1 1 2 1
4 7 2 1 2 3
9 4 2 3 4 3
2 9 4 3 4 5
5 2 4 5 6 5
376. Wiggle Subsequence - Python Solution
from typing import List


# DP
def wiggleMaxLengthDP(nums: List[int]) -> int:
    if len(nums) <= 1:
        return len(nums)

    up = [0 for _ in range(len(nums))]
    down = [0 for _ in range(len(nums))]

    up[0], down[0] = 1, 1

    for i in range(1, len(nums)):
        if nums[i] > nums[i - 1]:
            up[i] = down[i - 1] + 1
            down[i] = down[i - 1]
        elif nums[i] < nums[i - 1]:
            down[i] = up[i - 1] + 1
            up[i] = up[i - 1]
        else:
            up[i] = up[i - 1]
            down[i] = down[i - 1]

    return max(up[-1], down[-1])


# Greedy
def wiggleMaxLengthGreedy(nums: List[int]) -> int:
    if len(nums) < 2:
        return len(nums)

    prev_diff = nums[1] - nums[0]
    count = 2 if prev_diff != 0 else 1

    for i in range(2, len(nums)):
        diff = nums[i] - nums[i - 1]
        if (diff > 0 and prev_diff <= 0) or (diff < 0 and prev_diff >= 0):
            count += 1
            prev_diff = diff

    return count


# |-------------|-----------------|--------------|
# |  Approach   |      Time       |    Space     |
# |-------------|-----------------|--------------|
# |    DP       |      O(n)       |     O(n)     |
# |  Greedy     |      O(n)       |     O(1)     |
# |-------------|-----------------|--------------|

nums = [1, 7, 4, 9, 2, 5]
print(wiggleMaxLengthDP(nums))  # 6
print(wiggleMaxLengthGreedy(nums))  # 6

343. Integer Break

  • LeetCode | LeetCode CH (Medium)

  • Tags: math, dynamic programming

  • Return the maximum product of the integer after breaking it into at least two positive integers.
  • dp[i] stores the maximum product of the integer i.
  • Formula: dp[i] = max(dp[i - j] * j, (i - j) * j)
dp 3 4 5 6 7 8
2 2*1=2 2*2=4 2*3=6 2*4=8 2*5=10 2*6=12
dp[2]=1 1*1=2 1*2=2 1*3=3 1*4=4 1*5=5 1*6=6
3 3*1=3 3*2=6 3*3=9 3*4=12 3*5=15
dp[3]=2 2*1=2 2*2=4 2*3=6 2*4=8 2*5=10
4 4*1=4 4*2=8 4*3=12 4*4=16
dp[4]=4 4*1=4 4*2=8 4*3=12 4*4=16
5 5*1=5 5*2=10 5*3=15
dp[5]=6 6*1=6 6*2=12 6*3=18
6 6*1=6 6*2=12
dp[6]=9 9*1=9 9*2=18
7 7*1=7
dp[7]=12 12*1=12
dp[n] 2 4 6 9 12 18
343. Integer Break - Python Solution
def integerBreak(n: int) -> int:
    dp = [0 for _ in range(n + 1)]
    dp[2] = 1

    for i in range(3, n + 1):
        for j in range(2, i):
            dp[i] = max(dp[i], dp[i - j] * j, (i - j) * j)

    return dp[n]


# |-------------|-----------------|--------------|
# |  Approach   |      Time       |    Space     |
# |-------------|-----------------|--------------|
# |    DP       |      O(n^2)     |     O(n)     |
# |-------------|-----------------|--------------|

n = 8
print(integerBreak(n))  # 18

1025. Divisor Game

  • LeetCode | LeetCode CH (Easy)

  • Tags: math, dynamic programming, brainteaser, game theory

  • Return True if Alice wins the game, assuming both players play optimally.
  • dp[n] stores the result of the game when the number is n.
  • Initialize dp[1] = False.
1025. Divisor Game - Python Solution
# DP
def divisorGameDP(n: int) -> bool:
    if n <= 1:
        return False

    dp = [False for _ in range(n + 1)]

    for i in range(2, n + 1):
        for j in range(1, i):
            if i % j == 0 and not dp[i - j]:
                dp[i] = True
                break

    return dp[n]


# Math
def divisorGameDPMath(n: int) -> bool:
    return n % 2 == 0


# |-------------|-----------------|--------------|
# |  Approach   |      Time       |    Space     |
# |-------------|-----------------|--------------|
# |  DP         |      O(n^2)     |    O(n)      |
# |  Math       |      O(1)       |    O(1)      |
# |-------------|-----------------|--------------|

n = 2
print(divisorGameDP(n))  # True
print(divisorGameDPMath(n))  # True

Comments