Linked List¶
Table of Contents¶
- 21. Merge Two Sorted Lists (Easy)
- 141. Linked List Cycle (Easy)
- 206. Reverse Linked List (Easy)
- 876. Middle of the Linked List (Easy)
- 146. LRU Cache (Medium)
21. Merge Two Sorted Lists¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: linked list, recursion
- Merge the two lists into one sorted list.
21. Merge Two Sorted Lists - Python Solution
from typing import Optional
from template import ListNode
# Linked List
def mergeTwoLists(
list1: Optional[ListNode], list2: Optional[ListNode]
) -> Optional[ListNode]:
dummy = ListNode()
cur = dummy
while list1 and list2:
if list1.val < list2.val:
cur.next = list1
list1 = list1.next
else:
cur.next = list2
list2 = list2.next
cur = cur.next
if list1:
cur.next = list1
elif list2:
cur.next = list2
return dummy.next
list1 = ListNode.create([1, 2, 4])
list2 = ListNode.create([1, 3, 4])
print(mergeTwoLists(list1, list2))
# 1 -> 1 -> 2 -> 3 -> 4 -> 4
21. Merge Two Sorted Lists - C++ Solution
struct ListNode {
int val;
ListNode* next;
ListNode() : val(0), next(nullptr) {}
ListNode(int x) : val(x), next(nullptr) {}
ListNode(int x, ListNode* next) : val(x), next(next) {}
};
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
ListNode dummy;
ListNode* cur = &dummy;
while (list1 && list2) {
if (list1->val < list2->val) {
cur->next = list1;
list1 = list1->next;
} else {
cur->next = list2;
list2 = list2->next;
}
cur = cur->next;
}
cur->next = list1 ? list1 : list2;
return dummy.next;
}
};
141. Linked List Cycle¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: hash table, linked list, two pointers
- Determine if a linked list has a cycle in it.
graph LR
A((3)) --> B((2))
B --> C((0))
C --> D((4))
graph LR
A((3)) --> B((2))
B --> C((0))
C --> D((4))
D --> B
141. Linked List Cycle - Python Solution
from typing import Optional
from template import ListNode
def hasCycle(head: Optional[ListNode]) -> bool:
slow, fast = head, head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast:
return True
return False
print(hasCycle(ListNode.create([3, 2, 0, -4]))) # False
print(hasCycle(ListNode.create([3, 2, 0, -4], 1))) # True
141. Linked List Cycle - C++ Solution
#include <iostream>
struct ListNode {
int val;
ListNode* next;
ListNode(int x) : val(x), next(NULL) {}
};
class Solution {
public:
bool hasCycle(ListNode* head) {
ListNode* slow = head;
ListNode* fast = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if (fast == slow) return true;
}
return false;
}
};
206. Reverse Linked List¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: linked list, recursion
- Reverse a singly linked list.
graph LR
A((1)) --> B((2))
B --> C((3))
C --> D((4))
D --> E((5))
graph RL
E((5)) --> D((4))
D --> C((3))
C --> B((2))
B --> A((1))
206. Reverse Linked List - Python Solution
from typing import Optional
from template import ListNode
# Iterative
def reverseListIterative(head: Optional[ListNode]) -> Optional[ListNode]:
cur = head
prev = None
while cur:
temp = cur.next
cur.next = prev
prev = cur
cur = temp
return prev
# Recursive
def reverseListRecursive(head: Optional[ListNode]) -> Optional[ListNode]:
def reverse(cur, prev):
if not cur:
return prev
temp = cur.next
cur.next = prev
return reverse(temp, cur)
return reverse(head, None)
nums = [1, 2, 3, 4, 5]
head1 = ListNode.create(nums)
print(head1)
# 1 -> 2 -> 3 -> 4 -> 5
print(reverseListIterative(head1))
# 5 -> 4 -> 3 -> 2 -> 1
head2 = ListNode.create(nums)
print(reverseListRecursive(head2))
# 5 -> 4 -> 3 -> 2 -> 1
876. Middle of the Linked List¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: linked list, two pointers
876. Middle of the Linked List - Python Solution
from typing import Optional
from template import ListNode
# Linked List
def middleNode(head: Optional[ListNode]) -> Optional[ListNode]:
fast, slow = head, head
while fast and fast.next:
fast = fast.next.next
slow = slow.next
return slow
print(middleNode(ListNode.create([1, 2, 3, 4, 5])))
# 3 -> 4 -> 5
print(middleNode(ListNode.create([1, 2, 3, 4, 5, 6])))
# 4 -> 5 -> 6
146. LRU Cache¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: hash table, linked list, design, doubly linked list
- Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
- lru
Data structure | Description |
---|---|
Doubly Linked List | To store the key-value pairs. |
Hash Map | To store the key-node pairs. |
146. LRU Cache - Python Solution
from collections import OrderedDict
# Doubly Linked List
class Node:
def __init__(self, key=0, val=0):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {}
self.head = Node()
self.tail = Node()
self.head.next = self.tail
self.tail.prev = self.head
def remove(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def add_to_last(self, node):
self.tail.prev.next = node
node.prev = self.tail.prev
node.next = self.tail
self.tail.prev = node
def move_to_last(self, node):
self.remove(node)
self.add_to_last(node)
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self.move_to_last(node)
return node.val
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.val = value
self.move_to_last(node)
return None
if len(self.cache) == self.cap:
del self.cache[self.head.next.key]
self.remove(self.head.next)
node = Node(key=key, val=value)
self.cache[key] = node
self.add_to_last(node)
# OrderedDict
class LRUCacheOrderedDict:
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.cap = capacity
def get(self, key: int):
if key not in self.cache:
return -1
self.cache.move_to_end(key, last=True)
return self.cache[key]
def put(self, key: int, value: int):
if key in self.cache:
self.cache.move_to_end(key, last=True)
elif len(self.cache) >= self.cap:
self.cache.popitem(last=False)
self.cache[key] = value
cache = LRUCache(2)
cache.put(1, 1)
cache.put(2, 2)
assert cache.get(1) == 1
cache.put(3, 3)
assert cache.get(2) == -1
cache.put(4, 4)
assert cache.get(1) == -1
assert cache.get(3) == 3
assert cache.get(4) == 4
cache = LRUCacheOrderedDict(2)
cache.put(1, 1)
cache.put(2, 2)
assert cache.get(1) == 1
cache.put(3, 3)
assert cache.get(2) == -1
cache.put(4, 4)
assert cache.get(1) == -1
assert cache.get(3) == 3
assert cache.get(4) == 4
print("LRU Cache passed")
print("LRU Cache Ordered Dict passed")
146. LRU Cache - C++ Solution
#include <iostream>
#include <unordered_map>
using namespace std;
class Node {
public:
int key;
int val;
Node *prev;
Node *next;
Node(int k = 0, int v = 0) : key(k), val(v), prev(nullptr), next(nullptr) {}
};
class LRUCache {
private:
int cap;
unordered_map<int, Node *> cache;
Node *head;
Node *tail;
void remove(Node *node) {
node->prev->next = node->next;
node->next->prev = node->prev;
}
void insert_to_last(Node *node) {
tail->prev->next = node;
node->prev = tail->prev;
tail->prev = node;
node->next = tail;
}
void move_to_last(Node *node) {
remove(node);
insert_to_last(node);
}
public:
LRUCache(int capacity) {
this->cap = capacity;
head = new Node();
tail = new Node();
head->next = tail;
tail->prev = head;
}
int get(int key) {
if (cache.find(key) != cache.end()) {
Node *node = cache[key];
move_to_last(node);
return node->val;
}
return -1;
}
void put(int key, int value) {
if (cache.find(key) != cache.end()) {
Node *node = cache[key];
node->val = value;
move_to_last(node);
} else {
Node *newNode = new Node(key, value);
cache[key] = newNode;
insert_to_last(newNode);
if ((int)cache.size() > cap) {
Node *removed = head->next;
remove(removed);
cache.erase(removed->key);
delete removed;
}
}
}
};
int main() {
LRUCache lru(2);
lru.put(1, 1);
lru.put(2, 2);
cout << lru.get(1) << endl; // 1
lru.put(3, 3);
cout << lru.get(2) << endl; // -1
lru.put(4, 4);
cout << lru.get(1) << endl; // -1
cout << lru.get(3) << endl; // 3
cout << lru.get(4) << endl; // 4
return 0;
}