Dynamic Programming¶
Table of Contents¶
- 70. Climbing Stairs (Easy)
- 53. Maximum Subarray (Medium)
- 322. Coin Change (Medium)
- 416. Partition Equal Subset Sum (Medium)
- 62. Unique Paths (Medium)
70. Climbing Stairs¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: math, dynamic programming, memoization
- Return the number of distinct ways to reach the top of the stairs.
dp[n]
stores the number of distinct ways to reach then-th
stair.- Formula:
dp[n] = dp[n - 1] + dp[n - 2]
. - Initialize
dp[0] = 0
,dp[1] = 1
, anddp[2] = 2
.
n | dp[n-2] |
dp[n-1] |
dp[n] |
---|---|---|---|
0 | - | - | 0 |
1 | - | - | 1 |
2 | - | 1 | 2 |
3 | 1 | 2 | 3 |
4 | 2 | 3 | 5 |
5 | 3 | 5 | 8 |
6 | 5 | 8 | 13 |
7 | 8 | 13 | 21 |
8 | 13 | 21 | 34 |
9 | 21 | 34 | 55 |
10 | 34 | 55 | 89 |
70. Climbing Stairs - Python Solution
from functools import cache
# DP
def climbStairsDP(n: int) -> int:
if n <= 2:
return n
dp = [i for i in range(n + 1)]
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
# DP (Optimized)
def climbStairsDPOptimized(n: int) -> int:
if n <= 2:
return n
first, second = 1, 2
for _ in range(3, n + 1):
first, second = second, first + second
return second
# Recursion
def climbStairsRecursion(n: int) -> int:
@cache
def dfs(i: int) -> int:
if i <= 1:
return 1
return dfs(i - 1) + dfs(i - 2)
return dfs(n)
print(climbStairsDP(10)) # 89
print(climbStairsDPOptimized(10)) # 89
print(climbStairsRecursion(10)) # 89
70. Climbing Stairs - C++ Solution
#include <iostream>
using namespace std;
int climbStairs(int n) {
if (n <= 2) return n;
int f1 = 1, f2 = 2;
int res;
int i = 3;
while (i <= n) {
res = f1 + f2;
f1 = f2;
f2 = res;
++i;
}
return res;
}
int main() {
cout << climbStairs(2) << endl; // 2
cout << climbStairs(3) << endl; // 3
cout << climbStairs(6) << endl; // 13
return 0;
}
53. Maximum Subarray¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, divide and conquer, dynamic programming
53. Maximum Subarray - Python Solution
from typing import List
# DP Kadane
def maxSubArrayDP(nums: List[int]) -> int:
dp = [0 for _ in range(len(nums))]
dp[0] = nums[0]
maxSum = nums[0]
for i in range(1, len(nums)):
dp[i] = max(
dp[i - 1] + nums[i], # continue the previous subarray
nums[i], # start a new subarray
)
maxSum = max(maxSum, dp[i])
return maxSum
# Greedy
def maxSubArrayGreedy(nums: List[int]) -> int:
max_sum = nums[0]
cur_sum = 0
for num in nums:
cur_sum = max(cur_sum + num, num)
max_sum = max(max_sum, cur_sum)
return max_sum
# Prefix Sum
def maxSubArrayPrefixSum(nums: List[int]) -> int:
prefix_sum = 0
prefix_sum_min = 0
res = float("-inf")
for num in nums:
prefix_sum += num
res = max(res, prefix_sum - prefix_sum_min)
prefix_sum_min = min(prefix_sum_min, prefix_sum)
return res
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(maxSubArrayDP(nums)) # 6
print(maxSubArrayGreedy(nums)) # 6
print(maxSubArrayPrefixSum(nums)) # 6
322. Coin Change¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, breadth first search
322. Coin Change - Python Solution
from typing import List
def coinChange(coins: List[int], amount: int) -> int:
dp = [float("inf") for _ in range(amount + 1)]
dp[0] = 0
for i in range(1, amount + 1):
for c in coins:
if i - c >= 0:
dp[i] = min(dp[i], 1 + dp[i - c])
return dp[amount] if dp[amount] != float("inf") else -1
coins = [1, 2, 5]
amount = 11
print(coinChange(coins, amount)) # 3
416. Partition Equal Subset Sum¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
416. Partition Equal Subset Sum - Python Solution
from functools import cache
from typing import List
from template import knapsack01
# Memoization
def canPartitionMemoization(nums: List[int]) -> bool:
total = sum(nums)
n = len(nums)
if total % 2 == 1 or n <= 1:
return False
@cache
def dfs(i, j):
if i < 0:
return j == 0
return j >= nums[i] and dfs(i - 1, j - nums[i]) or dfs(i - 1, j)
return dfs(n - 1, total // 2)
# DP - Knapsack 01
def canPartitionTemplate(nums: List[int]) -> bool:
total = sum(nums)
if total % 2 == 1 or len(nums) < 2:
return False
target = total // 2
return knapsack01(nums, nums, target) == target
# DP - Knapsack 01
def canPartition(nums: List[int]) -> bool:
total = sum(nums)
if total % 2 == 1 or len(nums) < 2:
return False
target = total // 2
dp = [0 for _ in range(target + 1)]
for i in range(len(nums)):
for j in range(target, nums[i] - 1, -1):
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
return dp[target] == target
if __name__ == "__main__":
nums = [1, 5, 11, 5]
print(canPartitionTemplate(nums)) # True
print(canPartition(nums)) # True
print(canPartitionMemoization(nums)) # True
62. Unique Paths¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: math, dynamic programming, combinatorics
- Count the number of unique paths to reach the bottom-right corner of a
m x n
grid.
62. Unique Paths - Python Solution
# DP - 2D
def uniquePaths(m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
dp = [[1] * n for _ in range(m)]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[-1][-1]
print(uniquePaths(m=3, n=7)) # 28
# [[1, 1, 1, 1, 1, 1, 1],
# [1, 2, 3, 4, 5, 6, 7],
# [1, 3, 6, 10, 15, 21, 28]]
62. Unique Paths - C++ Solution
#include <iostream>
#include <vector>
using namespace std;
int uniquePaths(int m, int n) {
vector dp(m, vector<int>(n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
int main() {
int m = 3, n = 7;
cout << uniquePaths(m, n) << endl; // 28
return 0;
}