String Manacher Algorithm¶
Table of Contents¶
- 5. Longest Palindromic Substring (Medium)
- 647. Palindromic Substrings (Medium)
- 214. Shortest Palindrome (Hard)
- 3327. Check if DFS Strings Are Palindromes (Hard)
- 1745. Palindrome Partitioning IV (Hard)
- 1960. Maximum Product of the Length of Two Palindromic Substrings (Hard)
5. Longest Palindromic Substring¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: two pointers, string, dynamic programming
- Return the longest palindromic substring in
s
.
5. Longest Palindromic Substring - Python Solution
# DP - Interval
def longestPalindromeDP(s: str) -> str:
n = len(s)
if n <= 1:
return s
start, maxLen = 0, 1
# Init
dp = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = 1
for j in range(1, n):
for i in range(j):
if s[i] == s[j]:
if j - i <= 2:
dp[i][j] = 1
else:
dp[i][j] = dp[i + 1][j - 1]
if dp[i][j] and j - i + 1 > maxLen:
maxLen = j - i + 1
start = i
return s[start : start + maxLen]
# Expand Around Center
def longestPalindromeCenter(s: str) -> str:
def expand_around_center(left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return right - left - 1
if len(s) <= 1:
return s
start, end = 0, 0
for i in range(len(s)):
len1 = expand_around_center(i, i) # odd
len2 = expand_around_center(i, i + 1) # even
maxLen = max(len1, len2)
if maxLen > end - start:
start = i - (maxLen - 1) // 2
end = i + maxLen // 2
return s[start : end + 1]
s = "babad"
print(longestPalindromeDP(s)) # "bab"
print(longestPalindromeCenter(s)) # "aba"
647. Palindromic Substrings¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: two pointers, string, dynamic programming
- Return the number of palindromic substrings in
s
. - Bottom-up DP table
dp | a | b | b | a | e |
---|---|---|---|---|---|
a | 1 | 0 | 0 | 1 | 0 |
b | 0 | 1 | 1 | 0 | 0 |
b | 0 | 0 | 1 | 0 | 0 |
a | 0 | 0 | 0 | 1 | 0 |
e | 0 | 0 | 0 | 0 | 1 |
647. Palindromic Substrings - Python Solution
def countSubstrings(s: str) -> int:
n = len(s)
dp = [[0] * n for _ in range(n)]
res = 0
for i in range(n - 1, -1, -1):
for j in range(i, n):
if s[i] == s[j]:
if j - i <= 1:
dp[i][j] = 1
res += 1
elif dp[i + 1][j - 1]:
dp[i][j] = 1
res += 1
return res
print(countSubstrings("abbae")) # 7
214. Shortest Palindrome¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: string, rolling hash, string matching, hash function
214. Shortest Palindrome - Python Solution
from template import LPS
# KMP
def shortestPalindrome(s: str) -> str:
if not s:
return s
new = s + "#" + s[::-1]
lps = LPS(new)
add_len = len(s) - lps[-1]
return s[::-1][:add_len] + s
print(shortestPalindrome("aacecaaa")) # aaacecaaa
3327. Check if DFS Strings Are Palindromes¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, hash table, string, tree, depth first search, hash function
1745. Palindrome Partitioning IV¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: string, dynamic programming
1745. Palindrome Partitioning IV - Python Solution
# DP
def checkPartitioning(s: str) -> bool:
def palidrome_partition(s, k):
n = len(s)
min_change = [[0] * n for _ in range(n)]
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
min_change[i][j] = min_change[i + 1][j - 1] + (
1 if s[i] != s[j] else 0
)
dp = min_change[0]
for i in range(1, k):
for right in range(n - k + i, i - 1, -1):
dp[right] = min(
dp[left - 1] + min_change[left][right]
for left in range(i, right + 1)
)
return dp[-1]
return palidrome_partition(s, 3) == 0
s = "abcbdd"
print(checkPartitioning(s)) # True
1960. Maximum Product of the Length of Two Palindromic Substrings¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: string, rolling hash, hash function