DP Grid Basics¶
Table of Contents¶
- 64. Minimum Path Sum (Medium)
- 62. Unique Paths (Medium)
- 63. Unique Paths II (Medium)
- 120. Triangle (Medium)
- 3393. Count Paths With the Given XOR Value (Medium)
- 931. Minimum Falling Path Sum (Medium)
- 2684. Maximum Number of Moves in a Grid (Medium)
- 2304. Minimum Path Cost in a Grid (Medium)
- 1289. Minimum Falling Path Sum II (Hard)
- 3418. Maximum Amount of Money Robot Can Earn (Medium)
64. Minimum Path Sum¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix
64. Minimum Path Sum - Python Solution
from typing import List
# DP
def minPathSum(grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[i][0] = grid[i][0] + dp[i - 1][0]
for j in range(1, n):
dp[0][j] = grid[0][j] + dp[0][j - 1]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1])
return dp[-1][-1]
grid = [[1, 3, 1], [1, 5, 1], [4, 2, 1]]
print(minPathSum(grid)) # 7
62. Unique Paths¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: math, dynamic programming, combinatorics
- Count the number of unique paths to reach the bottom-right corner of a
m x n
grid.
62. Unique Paths - Python Solution
# DP - 2D
def uniquePaths(m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
dp = [[1] * n for _ in range(m)]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[-1][-1]
print(uniquePaths(m=3, n=7)) # 28
# [[1, 1, 1, 1, 1, 1, 1],
# [1, 2, 3, 4, 5, 6, 7],
# [1, 3, 6, 10, 15, 21, 28]]
62. Unique Paths - C++ Solution
#include <iostream>
#include <vector>
using namespace std;
int uniquePaths(int m, int n) {
vector dp(m, vector<int>(n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
int main() {
int m = 3, n = 7;
cout << uniquePaths(m, n) << endl; // 28
return 0;
}
63. Unique Paths II¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix
- Count the number of unique paths to reach the bottom-right corner of a
m x n
grid with obstacles.
63. Unique Paths II - Python Solution
from typing import List
# DP - 2D
def uniquePathsWithObstacles(obstacleGrid: List[List[int]]) -> int:
if obstacleGrid[0][0] == 1 or obstacleGrid[-1][-1] == 1:
return 0
m, n = len(obstacleGrid), len(obstacleGrid[0])
dp = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 0:
dp[i][0] = 1
else:
break
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[-1][-1]
obstacleGrid = [[0, 0, 0], [0, 1, 0], [0, 0, 0]]
print(uniquePathsWithObstacles(obstacleGrid)) # 2
# [[1, 1, 1],
# [1, 0, 1],
# [1, 1, 2]]
120. Triangle¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
3393. Count Paths With the Given XOR Value¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, bit manipulation, matrix
931. Minimum Falling Path Sum¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix
2684. Maximum Number of Moves in a Grid¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix
2684. Maximum Number of Moves in a Grid - Python Solution
from typing import List
# DFS
def maxMovesDFS(grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
res = 0
def dfs(r, c):
nonlocal res
res = max(res, c)
if res == n - 1:
return
for k in r - 1, r, r + 1:
if 0 <= k < m and grid[k][c + 1] > grid[r][c]:
dfs(k, c + 1)
grid[r][c] = 0
for i in range(m):
dfs(i, 0)
return res
grid = [[2, 4, 3, 5], [5, 4, 9, 3], [3, 4, 2, 11], [10, 9, 13, 15]]
print(maxMovesDFS(grid)) # 3
2304. Minimum Path Cost in a Grid¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix
1289. Minimum Falling Path Sum II¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming, matrix
3418. Maximum Amount of Money Robot Can Earn¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, matrix