DP 0-1 Knapsack¶
Table of Contents¶
- 2915. Length of the Longest Subsequence That Sums to Target (Medium)
- 416. Partition Equal Subset Sum (Medium)
- 494. Target Sum (Medium)
- 2787. Ways to Express an Integer as Sum of Powers (Medium)
- 3180. Maximum Total Reward Using Operations I (Medium)
- 474. Ones and Zeroes (Medium)
- 1049. Last Stone Weight II (Medium)
- 1774. Closest Dessert Cost (Medium)
- 879. Profitable Schemes (Hard)
- 3082. Find the Sum of the Power of All Subsequences (Hard)
- 956. Tallest Billboard (Hard)
- 2518. Number of Great Partitions (Hard)
- 2742. Painting the Walls (Hard)
- 3287. Find the Maximum Sequence Value of Array (Hard)
- 2291. Maximum Profit From Trading Stocks (Medium) 👑
- 2431. Maximize Total Tastiness of Purchased Fruits (Medium) 👑
2915. Length of the Longest Subsequence That Sums to Target¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
416. Partition Equal Subset Sum¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
from functools import cache
from typing import List
from template import knapsack01
# Memoization
def canPartitionMemoization(nums: List[int]) -> bool:
total = sum(nums)
n = len(nums)
if total % 2 == 1 or n <= 1:
return False
@cache
def dfs(i, j):
if i < 0:
return j == 0
return j >= nums[i] and dfs(i - 1, j - nums[i]) or dfs(i - 1, j)
return dfs(n - 1, total // 2)
# DP - Knapsack 01
def canPartitionTemplate(nums: List[int]) -> bool:
total = sum(nums)
if total % 2 == 1 or len(nums) < 2:
return False
target = total // 2
return knapsack01(nums, nums, target) == target
# DP - Knapsack 01
def canPartition(nums: List[int]) -> bool:
total = sum(nums)
if total % 2 == 1 or len(nums) < 2:
return False
target = total // 2
dp = [0 for _ in range(target + 1)]
for i in range(len(nums)):
for j in range(target, nums[i] - 1, -1):
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
return dp[target] == target
if __name__ == "__main__":
nums = [1, 5, 11, 5]
print(canPartitionTemplate(nums)) # True
print(canPartition(nums)) # True
print(canPartitionMemoization(nums)) # True
494. Target Sum¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, backtracking
from typing import List
def findTargetSumWays(nums: List[int], target: int) -> int:
totalSum = sum(nums)
if abs(target) > totalSum:
return 0
if (target + totalSum) % 2 == 1:
return 0
targetSum = (target + totalSum) // 2
dp = [0] * (targetSum + 1)
dp[0] = 1
for i in range(len(nums)):
for j in range(targetSum, nums[i] - 1, -1):
dp[j] += dp[j - nums[i]]
return dp[targetSum]
nums = [1, 1, 1, 1, 1]
target = 3
print(findTargetSumWays(nums, target)) # 5
2787. Ways to Express an Integer as Sum of Powers¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: dynamic programming
3180. Maximum Total Reward Using Operations I¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
474. Ones and Zeroes¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, string, dynamic programming
from typing import List
def findMaxForm(strs: List[str], m: int, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(m + 1)]
for s in strs:
zerosNum = s.count("0")
onesNum = len(s) - zerosNum
for i in range(m, zerosNum - 1, -1):
for j in range(n, onesNum - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zerosNum][j - onesNum] + 1)
return dp[m][n]
strs = ["10", "0001", "111001", "1", "0"]
m = 5
n = 3
print(findMaxForm(strs, m, n)) # 4
1049. Last Stone Weight II¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
from typing import List
def lastStoneWeightII(stones: List[int]) -> int:
target = sum(stones) // 2
dp = [0 for _ in range(target + 1)]
for i in range(len(stones)):
for j in range(target, stones[i] - 1, -1):
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
result = (sum(stones) - dp[target]) - dp[target]
return result
stones = [2, 7, 4, 1, 8, 1]
print(lastStoneWeightII(stones)) # 1
1774. Closest Dessert Cost¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming, backtracking
879. Profitable Schemes¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming
3082. Find the Sum of the Power of All Subsequences¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming
956. Tallest Billboard¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming
2518. Number of Great Partitions¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming
2742. Painting the Walls¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming
3287. Find the Maximum Sequence Value of Array¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: array, dynamic programming, bit manipulation
2291. Maximum Profit From Trading Stocks¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming
2431. Maximize Total Tastiness of Purchased Fruits¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, dynamic programming