Skip to content

Binary Tree Construction

Table of Contents

108. Convert Sorted Array to Binary Search Tree

  • LeetCode | LeetCode CH (Easy)

  • Tags: array, divide and conquer, tree, binary search tree, binary tree

108. Convert Sorted Array to Binary Search Tree - Python Solution
from typing import List, Optional


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def sortedArrayToBST(nums: List[int]) -> Optional[TreeNode]:
    if len(nums) == 0:
        return None

    mid = len(nums) // 2
    root = TreeNode(nums[mid])

    root.left = sortedArrayToBST(nums[:mid])
    root.right = sortedArrayToBST(nums[mid + 1 :])

    return root


nums = [-10, -3, 0, 5, 9]
root = sortedArrayToBST(nums)
#      0
#     / \
#   -3   9
#   /   /
# -10  5
108. Convert Sorted Array to Binary Search Tree - C++ Solution
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if (nums.size() == 0) return nullptr;

        int mid = nums.size() / 2;
        TreeNode* root = new TreeNode(nums[mid]);

        vector<int> left(nums.begin(), nums.begin() + mid);
        vector<int> right(nums.begin() + mid + 1, nums.end());

        root->left = sortedArrayToBST(left);
        root->right = sortedArrayToBST(right);

        return root;
    }
};

int main() { return 0; }

654. Maximum Binary Tree

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, divide and conquer, stack, tree, monotonic stack, binary tree

654. Maximum Binary Tree - Python Solution
from typing import List, Optional


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def constructMaximumBinaryTree(nums: List[int]) -> Optional[TreeNode]:
    if len(nums) == 0:
        return None

    maximum = max(nums)
    rootIndex = nums.index(maximum)

    root = TreeNode(maximum)

    left_nums = nums[:rootIndex]
    right_nums = nums[rootIndex + 1 :]

    root.left = constructMaximumBinaryTree(left_nums)
    root.right = constructMaximumBinaryTree(right_nums)

    return root


nums = [3, 2, 1, 6, 0, 5]
root = constructMaximumBinaryTree(nums)
#     __6__
#    /     \
#   3       5
#    \     /
#     2   0
#      \
#       1

998. Maximum Binary Tree II

1008. Construct Binary Search Tree from Preorder Traversal

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, stack, tree, binary search tree, monotonic stack, binary tree

1382. Balance a Binary Search Tree

  • LeetCode | LeetCode CH (Medium)

  • Tags: divide and conquer, greedy, tree, depth first search, binary search tree, binary tree

2196. Create Binary Tree From Descriptions

105. Construct Binary Tree from Preorder and Inorder Traversal

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, hash table, divide and conquer, tree, binary tree

105. Construct Binary Tree from Preorder and Inorder Traversal - Python Solution
from typing import List, Optional

from helper import TreeNode


def buildTree(preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
    """
    preorder  root left right  1  2  3
    inorder   left root right  4  5  6
    """
    if len(preorder) == 0:
        return None

    root_val = preorder[0]  # 1
    root = TreeNode(root_val)

    separator_idx = inorder.index(root_val)  # 5

    left_inorder = inorder[:separator_idx]  # 4
    right_inorder = inorder[separator_idx + 1 :]  # 6

    left_preorder = preorder[1 : 1 + len(left_inorder)]  # 2
    right_preorder = preorder[1 + len(left_inorder) :]  # 3

    root.left = buildTree(left_preorder, left_inorder)
    root.right = buildTree(right_preorder, right_inorder)

    return root


preorder = [3, 9, 20, 15, 7]
inorder = [9, 3, 15, 20, 7]
root = buildTree(preorder, inorder)
print(root)
#     3
#    / \
#   9  20
#     /  \
#    15   7
105. Construct Binary Tree from Preorder and Inorder Traversal - C++ Solution
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    vector<int> preorder;
    unordered_map<int, int> inorderMap;

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        this->preorder = preorder;
        for (size_t i = 0; i < inorder.size(); i++) {
            inorderMap[inorder[i]] = i;
        }
        return buildSubtree(0, 0, inorder.size() - 1);
    }

   private:
    TreeNode* buildSubtree(int rootIndex, int left, int right) {
        if (left > right) return nullptr;

        TreeNode* root = new TreeNode(preorder[rootIndex]);
        int inorderIndex = inorderMap[preorder[rootIndex]];

        root->left = buildSubtree(rootIndex + 1, left, inorderIndex - 1);
        root->right = buildSubtree(rootIndex + (inorderIndex - left + 1),
                                   inorderIndex + 1, right);

        return root;
    }
};

int main() {
    vector<int> preorder = {3, 9, 20, 15, 7};
    vector<int> inorder = {9, 3, 15, 20, 7};
    Solution solution;
    TreeNode* root = solution.buildTree(preorder, inorder);
    cout << root->val << endl;                // 3
    cout << root->left->val << endl;          // 9
    cout << root->right->val << endl;         // 20
    cout << root->right->left->val << endl;   // 15
    cout << root->right->right->val << endl;  // 7
    return 0;
}

106. Construct Binary Tree from Inorder and Postorder Traversal

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, hash table, divide and conquer, tree, binary tree

106. Construct Binary Tree from Inorder and Postorder Traversal - Python Solution
from typing import List, Optional


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def buildTree(inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
    """
    inorder:    left root  right   1  2  3
    postorder:  left right root    4  5  6
    """

    if not postorder:
        return None

    root_val = postorder[-1]  # 6
    root = TreeNode(root_val)

    separator_idx = inorder.index(root_val)  # 2

    left_inorder = inorder[:separator_idx]  # 1
    right_inorder = inorder[separator_idx + 1 :]  # 3

    left_postorder = postorder[: len(left_inorder)]  # 4
    right_postorder = postorder[len(left_inorder) : -1]  # 5

    root.left = buildTree(left_inorder, left_postorder)
    root.right = buildTree(right_inorder, right_postorder)

    return root


inorder = [9, 3, 15, 20, 7]
postorder = [9, 15, 7, 20, 3]
root = buildTree(inorder, postorder)
print(root)
#     3
#    / \
#   9  20
#     /  \
#    15   7

889. Construct Binary Tree from Preorder and Postorder Traversal

  • LeetCode | LeetCode CH (Medium)

  • Tags: array, hash table, divide and conquer, tree, binary tree

1028. Recover a Tree From Preorder Traversal

536. Construct Binary Tree from String

1628. Design an Expression Tree With Evaluate Function

1597. Build Binary Expression Tree From Infix Expression

Comments