Binary Tree Backtracking¶
Table of Contents¶
- 257. Binary Tree Paths (Easy)
- 113. Path Sum II (Medium)
- 437. Path Sum III (Medium)
257. Binary Tree Paths¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: string, backtracking, tree, depth first search, binary tree
257. Binary Tree Paths - Python Solution
from typing import List, Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def binaryTreePaths(root: Optional[TreeNode]) -> List[str]:
res = []
def dfs(node, path):
if not node:
return
path += str(node.val)
if not node.left and not node.right:
res.append(path)
return
path += "->"
dfs(node.left, path)
dfs(node.right, path)
dfs(root, "")
return res
root = build([1, 2, 3, None, 5])
print(root)
# __1
# / \
# 2 3
# \
# 5
print(binaryTreePaths(root)) # ['1->2->5', '1->3']
113. Path Sum II¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: backtracking, tree, depth first search, binary tree
437. Path Sum III¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, depth first search, binary tree
437. Path Sum III - C++ Solution
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right)
: val(x), left(left), right(right) {}
};
class Solution {
public:
int pathSum(TreeNode *root, int targetSum) {
int res = 0;
unordered_map<long long, int> cnt{{0, 1}};
auto dfs = [&](auto &&self, TreeNode *node, long long cur) {
if (!node) return;
cur += node->val;
if (cnt.find(cur - targetSum) != cnt.end())
res += cnt[cur - targetSum];
cnt[cur]++;
self(self, node->left, cur);
self(self, node->right, cur);
cnt[cur]--;
};
dfs(dfs, root, 0);
return res;
}
};
int main() {
Solution s;
{
TreeNode *root = new TreeNode(10);
root->left = new TreeNode(5);
root->right = new TreeNode(-3);
root->left->left = new TreeNode(3);
root->left->right = new TreeNode(2);
root->right->right = new TreeNode(11);
root->left->left->left = new TreeNode(3);
root->left->left->right = new TreeNode(-2);
root->left->right->right = new TreeNode(1);
cout << s.pathSum(root, 8) << endl; // 3
}
{
TreeNode *root = new TreeNode(5);
root->left = new TreeNode(4);
root->right = new TreeNode(8);
root->left->left = new TreeNode(11);
root->right->left = new TreeNode(13);
root->right->right = new TreeNode(4);
root->left->left->left = new TreeNode(7);
root->left->left->right = new TreeNode(2);
root->right->right->left = new TreeNode(5);
root->right->right->right = new TreeNode(1);
cout << s.pathSum(root, 22) << endl; // 3
}
return 0;
}