Trees¶
Table of Contents¶
- 226. Invert Binary Tree (Easy)
- 104. Maximum Depth of Binary Tree (Easy)
- 100. Same Tree (Easy)
- 572. Subtree of Another Tree (Easy)
- 235. Lowest Common Ancestor of a Binary Search Tree (Medium)
- 102. Binary Tree Level Order Traversal (Medium)
- 98. Validate Binary Search Tree (Medium)
- 230. Kth Smallest Element in a BST (Medium)
- 105. Construct Binary Tree from Preorder and Inorder Traversal (Medium)
- 124. Binary Tree Maximum Path Sum (Hard)
- 298. Binary Tree Longest Consecutive Sequence (Medium) 👑
226. Invert Binary Tree¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: tree, depth first search, breadth first search, binary tree
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# Recursive
def invertTreeRecursive(root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return root
root.left, root.right = root.right, root.left
invertTreeRecursive(root.left)
invertTreeRecursive(root.right)
return root
# Iterative
def invertTreeIterative(root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return root
stack = [root]
while stack:
node = stack.pop()
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
return root
root = build([4, 2, 7, 1, 3, 6, 9])
print(root)
# __4__
# / \
# 2 7
# / \ / \
# 1 3 6 9
invertedRecursive = invertTreeRecursive(root)
print(invertedRecursive)
# __4__
# / \
# 7 2
# / \ / \
# 9 6 3 1
root = build([4, 2, 7, 1, 3, 6, 9])
invertedIterative = invertTreeIterative(root)
print(invertedIterative)
# __4__
# / \
# 7 2
# / \ / \
# 9 6 3 1
104. Maximum Depth of Binary Tree¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: tree, depth first search, breadth first search, binary tree
from collections import deque
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def maxDepthRecursive(root: Optional[TreeNode]) -> int:
if not root:
return 0
left = maxDepthRecursive(root.left)
right = maxDepthRecursive(root.right)
return 1 + max(left, right)
# DFS
def maxDepthDFS(root: Optional[TreeNode]) -> int:
res = 0
def dfs(node, cnt):
if node is None:
return
cnt += 1
nonlocal res
res = max(res, cnt)
dfs(node.left, cnt)
dfs(node.right, cnt)
dfs(root, 0)
return res
# Iterative
def maxDepthIterative(root: Optional[TreeNode]) -> int:
if not root:
return 0
q = deque([root])
res = 0
while q:
res += 1
n = len(q)
for _ in range(n):
node = q.popleft()
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return res
root = [1, 2, 2, 3, 4, None, None, None, None, 5]
root = build(root)
print(root)
# ____1
# / \
# 2__ 2
# / \
# 3 4
# /
# 5
print(maxDepthRecursive(root)) # 4
print(maxDepthIterative(root)) # 4
print(maxDepthDFS(root)) # 4
100. Same Tree¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: tree, depth first search, breadth first search, binary tree
from collections import deque
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# 1. Recursive
def isSameTreeRecursive(p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
if not p and not q:
return True
if not p or not q:
return False
if p.val != q.val:
return False
return isSameTreeRecursive(p.left, q.left) and isSameTreeRecursive(
p.right, q.right
)
# 2. Iterative with queue
def isSameTreeIterativeQueue(
p: Optional[TreeNode], q: Optional[TreeNode]
) -> bool:
queue = deque([(p, q)])
while queue:
p, q = queue.popleft()
if not p and not q:
continue
if not p or not q:
return False
if p.val != q.val:
return False
queue.append((p.left, q.left))
queue.append((p.right, q.right))
return True
# 3. Iterative with stack
def isSameTreeIterativeStack(
p: Optional[TreeNode], q: Optional[TreeNode]
) -> bool:
stack = [(p, q)]
while stack:
n1, n2 = stack.pop()
if not n1 and not n2:
continue
if not n1 or not n2:
return False
if n1.val != n2.val:
return False
stack.append((n1.left, n2.left))
stack.append((n1.right, n2.right))
return True
p1 = build([1, 2, 3])
q1 = build([1, 2, 3])
p2 = build([1, 2])
q2 = build([1, None, 2])
print(isSameTreeRecursive(p1, q1)) # True
print(isSameTreeRecursive(p2, q2)) # False
print(isSameTreeIterativeQueue(p1, q1)) # True
print(isSameTreeIterativeQueue(p2, q2)) # False
print(isSameTreeIterativeStack(p1, q1)) # True
print(isSameTreeIterativeStack(p2, q2)) # False
572. Subtree of Another Tree¶
-
LeetCode | LeetCode CH (Easy)
-
Tags: tree, depth first search, string matching, binary tree, hash function
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# DFS - Tree
def isSubtree(root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
def isSameTree(p, q):
if not p and not q:
return True
if not p or not q:
return False
if p.val != q.val:
return False
return isSameTree(p.left, q.left) and isSameTree(p.right, q.right)
if not root:
return False
return (
isSameTree(root, subRoot)
or isSubtree(root.left, subRoot)
or isSubtree(root.right, subRoot)
)
# |------------|---------|----------|
# | Approach | Time | Space |
# |------------|---------|----------|
# | DFS | O(n * m)| O(n) |
# |------------|---------|----------|
root = build([3, 4, 5, 1, 2, None, None, None, None, 0])
subRoot = build([4, 1, 2])
print(root)
# ____3
# / \
# 4__ 5
# / \
# 1 2
# /
# 0
print(subRoot)
# 4
# / \
# 1 2
print(isSubtree(root, subRoot)) # False
235. Lowest Common Ancestor of a Binary Search Tree¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, depth first search, binary search tree, binary tree
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def lowestCommonAncestor(
root: "TreeNode", p: "TreeNode", q: "TreeNode"
) -> "TreeNode":
while root:
if root.val > p.val and root.val > q.val:
root = root.left
elif root.val < p.val and root.val < q.val:
root = root.right
else:
return root
root = [6, 2, 8, 0, 4, 7, 9, None, None, 3, 5]
root = build(root)
p = root.left
q = root.right
print(root)
# ______6__
# / \
# 2__ 8
# / \ / \
# 0 4 7 9
# / \
# 3 5
print(lowestCommonAncestor(root, p, q))
# ______6__
# / \
# 2__ 8
# / \ / \
# 0 4 7 9
# / \
# 3 5
102. Binary Tree Level Order Traversal¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, breadth first search, binary tree
from collections import deque
from typing import List, Optional
from binarytree import Node as TreeNode
from binarytree import build
def levelOrder(root: Optional[TreeNode]) -> List[List[int]]:
if not root:
return []
q = deque([root])
res = []
while q:
level = []
size = len(q)
for _ in range(size):
cur = q.popleft()
level.append(cur.val)
if cur.left:
q.append(cur.left)
if cur.right:
q.append(cur.right)
res.append(level)
return res
tree = build([3, 9, 20, None, None, 15, 7])
print(tree)
# 3___
# / \
# 9 _20
# / \
# 15 7
print(levelOrder(tree)) # [[3], [9, 20], [15, 7]]
98. Validate Binary Search Tree¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, depth first search, binary search tree, binary tree
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
def isValidBST(root: Optional[TreeNode]) -> bool:
inorder = [] # inorder traversal of BST
def dfs(node):
if not node:
return None
dfs(node.left)
inorder.append(node.val)
dfs(node.right)
dfs(root)
for i in range(1, len(inorder)):
if inorder[i] <= inorder[i - 1]:
return False
return True
root = [5, 1, 4, None, None, 3, 6]
root = build(root)
print(root)
# 5__
# / \
# 1 4
# / \
# 3 6
print(isValidBST(root)) # False
# [1, 5, 3, 4, 6]
#include <cassert>
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right)
: val(x), left(left), right(right) {}
};
class Solution {
private:
vector<int> inorder;
bool check(vector<int> inorder) {
int n = inorder.size();
if (n <= 1) return true;
for (int i = 1; i < n; i++) {
if (inorder[i] <= inorder[i - 1]) return false;
}
return true;
}
public:
bool isValidBST(TreeNode *root) {
auto dfs = [&](auto &&self, TreeNode *node) -> void {
if (!node) return;
self(self, node->left);
inorder.push_back(node->val);
self(self, node->right);
};
dfs(dfs, root);
return check(inorder);
}
};
int main() {
Solution s;
TreeNode *root = new TreeNode(2);
root->left = new TreeNode(1);
root->right = new TreeNode(3);
assert(s.isValidBST(root) == true);
root = new TreeNode(5);
root->left = new TreeNode(1);
root->right = new TreeNode(4);
root->right->left = new TreeNode(3);
root->right->right = new TreeNode(6);
assert(s.isValidBST(root) == false);
root = new TreeNode(5);
root->left = new TreeNode(4);
root->right = new TreeNode(6);
root->right->left = new TreeNode(3);
root->right->right = new TreeNode(7);
assert(s.isValidBST(root) == false);
return 0;
}
230. Kth Smallest Element in a BST¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, depth first search, binary search tree, binary tree
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def kthSmallestRecursive(root: Optional[TreeNode], k: int) -> int:
inorder = []
def dfs(node):
if not node:
return None
dfs(node.left)
inorder.append(node.val)
dfs(node.right)
dfs(root)
return inorder[k - 1]
# Iteratve
def kthSmallestIteratve(root: Optional[TreeNode], k: int) -> int:
stack = []
while True:
while root:
stack.append(root)
root = root.left
root = stack.pop()
k -= 1
if not k:
return root.val
root = root.right
root = build([3, 1, 4, None, 2])
k = 1
print(root)
# __3
# / \
# 1 4
# \
# 2
print(kthSmallestRecursive(root, k)) # 1
print(kthSmallestIteratve(root, k)) # 1
105. Construct Binary Tree from Preorder and Inorder Traversal¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: array, hash table, divide and conquer, tree, binary tree
from typing import List, Optional
from helper import TreeNode
def buildTree(preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
"""
preorder root left right 1 2 3
inorder left root right 4 5 6
"""
if len(preorder) == 0:
return None
root_val = preorder[0] # 1
root = TreeNode(root_val)
separator_idx = inorder.index(root_val) # 5
left_inorder = inorder[:separator_idx] # 4
right_inorder = inorder[separator_idx + 1 :] # 6
left_preorder = preorder[1 : 1 + len(left_inorder)] # 2
right_preorder = preorder[1 + len(left_inorder) :] # 3
root.left = buildTree(left_preorder, left_inorder)
root.right = buildTree(right_preorder, right_inorder)
return root
preorder = [3, 9, 20, 15, 7]
inorder = [9, 3, 15, 20, 7]
root = buildTree(preorder, inorder)
print(root)
# 3
# / \
# 9 20
# / \
# 15 7
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right)
: val(x), left(left), right(right) {}
};
class Solution {
public:
vector<int> preorder;
unordered_map<int, int> inorderMap;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
this->preorder = preorder;
for (size_t i = 0; i < inorder.size(); i++) {
inorderMap[inorder[i]] = i;
}
return buildSubtree(0, 0, inorder.size() - 1);
}
private:
TreeNode* buildSubtree(int rootIndex, int left, int right) {
if (left > right) return nullptr;
TreeNode* root = new TreeNode(preorder[rootIndex]);
int inorderIndex = inorderMap[preorder[rootIndex]];
root->left = buildSubtree(rootIndex + 1, left, inorderIndex - 1);
root->right = buildSubtree(rootIndex + (inorderIndex - left + 1),
inorderIndex + 1, right);
return root;
}
};
int main() {
vector<int> preorder = {3, 9, 20, 15, 7};
vector<int> inorder = {9, 3, 15, 20, 7};
Solution solution;
TreeNode* root = solution.buildTree(preorder, inorder);
cout << root->val << endl; // 3
cout << root->left->val << endl; // 9
cout << root->right->val << endl; // 20
cout << root->right->left->val << endl; // 15
cout << root->right->right->val << endl; // 7
return 0;
}
124. Binary Tree Maximum Path Sum¶
-
LeetCode | LeetCode CH (Hard)
-
Tags: dynamic programming, tree, depth first search, binary tree
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
def maxPathSum(root: Optional[TreeNode]) -> int:
res = float("-inf")
def dfs(node):
if not node:
return 0
leftMax = max(dfs(node.left), 0)
rightMax = max(dfs(node.right), 0)
cur = node.val + leftMax + rightMax
nonlocal res
res = max(res, cur)
return node.val + max(leftMax, rightMax)
dfs(root)
return res
root = build([-10, 9, 20, None, None, 15, 7])
print(root)
# -10___
# / \
# 9 _20
# / \
# 15 7
print(maxPathSum(root)) # 42
298. Binary Tree Longest Consecutive Sequence¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: tree, depth first search, binary tree
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# Binary Tree
def longestConsecutive(root: Optional[TreeNode]) -> int:
res = 0
def dfs(node):
if not node:
return 0
left, right = dfs(node.left), dfs(node.right)
cur = 1
if node.left and node.left.val == (node.val + 1):
cur = max(cur, left + 1)
if node.right and node.right.val == (node.val + 1):
cur = max(cur, right + 1)
nonlocal res
res = max(res, cur)
return cur
dfs(root)
return res
if __name__ == "__main__":
root = build([1, 3, 2, 4, None, None, None, 5])
print(root)
# 1
# / \
# 3 2
# /
# 4
# /
# 5
print(longestConsecutive(root)) # 3