2D Dynamic Programming¶
Table of Contents¶
- 62. Unique Paths (Medium)
- 1143. Longest Common Subsequence (Medium)
62. Unique Paths¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: math, dynamic programming, combinatorics
- Count the number of unique paths to reach the bottom-right corner of a
m x n
grid.
62. Unique Paths - Python Solution
# DP - 2D
def uniquePaths(m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
dp = [[1] * n for _ in range(m)]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[-1][-1]
print(uniquePaths(m=3, n=7)) # 28
# [[1, 1, 1, 1, 1, 1, 1],
# [1, 2, 3, 4, 5, 6, 7],
# [1, 3, 6, 10, 15, 21, 28]]
62. Unique Paths - C++ Solution
#include <iostream>
#include <vector>
using namespace std;
int uniquePaths(int m, int n) {
vector dp(m, vector<int>(n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
int main() {
int m = 3, n = 7;
cout << uniquePaths(m, n) << endl; // 28
return 0;
}
1143. Longest Common Subsequence¶
-
LeetCode | LeetCode CH (Medium)
-
Tags: string, dynamic programming
1143. Longest Common Subsequence - Python Solution
# DP (LCS)
def longestCommonSubsequence(text1: str, text2: str) -> int:
"""
Computes the length of the longest common subsequence between two strings.
dp[i][j]: the length of the LCS between text1[:i] and text2[:j].
Args:
text1 (str): The first string.
text2 (str): The second string.
Returns:
int: The length of the longest common subsequence.
Example:
>>> longestCommonSubsequence("abcde", "ace")
3
>>> longestCommonSubsequence("abc", "abc")
3
>>> longestCommonSubsequence("abc", "def")
0
"""
m, n = len(text1), len(text2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
return dp[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()